51 research outputs found

    Multilayer shallow water models with locally variable number of layers and semi-implicit time discretization

    Get PDF
    We propose an extension of the discretization approaches for multilayer shallow water models, aimed at making them more flexible and efficient for realistic applications to coastal flows. A novel discretization approach is proposed, in which the number of vertical layers and their distribution are allowed to change in different regions of the computational domain. Furthermore, semi-implicit schemes are employed for the time discretization, leading to a significant efficiency improvement for subcritical regimes. We show that, in the typical regimes in which the application of multilayer shallow water models is justified, the resulting discretization does not introduce any major spurious feature and allows again to reduce substantially the computational cost in areas with complex bathymetry. As an example of the potential of the proposed technique, an application to a sediment transport problem is presented, showing a remarkable improvement with respect to standard discretization approaches

    A weakly non-hydrostatic shallow model for dry granular flows

    Full text link
    A non-hydrostatic depth-averaged model for dry granular flows is proposed, taking into account vertical acceleration. A variable friction coefficient based on the μ(I)\mu(I) rheology is considered. The model is obtained from an asymptotic analysis in a local reference system, where the non-hydrostatic contribution is supposed to be small compared to the hydrostatic one. The non-hydrostatic counterpart of the pressure may be written as the sum of two terms: one corresponding to the stress tensor and the other to the vertical acceleration. The model introduced here is weakly non-hydrostatic, in the sense that the non-hydrostatic contribution related to the stress tensor is not taken into account due to its complex implementation. A simple and efficient numerical scheme is proposed. It consists of a three-step splitting procedure, and it is based on a hydrostatic reconstruction. Two key points are: (i) the friction force has to be taken into account before solving the non-hydrostatic pressure. Otherwise, the incompressibility condition is not ensured; (ii) both the hydrostatic and the non-hydrostatic pressure are taken into account when dealing with the friction force. The model and numerical scheme are then validated based on several numerical tests, including laboratory experiments of granular collapse. The influence of non-hydrostatic terms and of the choice of the coordinate system (Cartesian or local) is analyzed. We show that non-hydrostatic models are less sensitive to the choice of the coordinate system. In general, the non-hydrostatic model introduced here much better reproduces granular collapse experiments compared to hydrostatic models. An important result is that the simulated mass profiles up to the deposit and the front velocity are greatly improved. As expected, the influence of the non-hydrostatic pressure is shown to be larger for small values of the slope

    What is the optimal level of vitamin D in non-dialysis chronic kidney disease population?

    Get PDF
    AIM: To evaluate thresholds for serum 25(OH)D concentrations in relation to death, kidney progression and hospitalization in non-dialysis chronic kidney disease (CKD) population. METHODS: Four hundred and seventy non-dialysis 3-5 stage CKD patients participating in OSERCE-2 study, a prospective, multicenter, cohort study, were prospectively evaluated and categorized into 3 groups according to 25(OH)D levels at enrollment (less than 20 ng/mL, between 20 and 29 ng/mL, and at or above 30 ng/mL), considering 25(OH)D between 20 and 29 ng/mL as reference group. Association between 25(OH)D levels and death (primary outcome), and time to first hospitalization and renal progression (secondary outcomes) over a 3-year follow-up, were assessed by Kaplan-Meier survival curves and Cox-proportional hazard models. To identify 25(OH)D levels at highest risk for outcomes, receiver operating characteristic (ROC) curves were performed. RESULTS: Over 29 ± 12 mo of follow-up, 46 (10%) patients dead, 156 (33%) showed kidney progression, and 126 (27%) were hospitalized. After multivariate adjustment, 25(OH)D < 20 ng/mL was an independent predictor of all-cause mortality (HR = 2.33; 95%CI: 1.10-4.91; P = 0.027) and kidney progression (HR = 2.46; 95%CI: 1.63-3.71; P < 0.001), whereas the group with 25(OH)D at or above 30 ng/mL did not have a different hazard for outcomes from the reference group. Hospitalization outcomes were predicted by 25(OH) levels (HR = 0.98; 95%CI: 0.96-1.00; P = 0.027) in the unadjusted Cox proportional hazards model, but not after multivariate adjusting. ROC curves identified 25(OH)D levels at highest risk for death, kidney progression, and hospitalization, at 17.4 ng/mL [area under the curve (AUC) = 0.60; 95%CI: 0.52-0.69; P = 0.027], 18.6 ng/mL (AUC = 0.65; 95%CI: 0.60-0.71; P < 0.001), and 19.0 ng/mL (AUC = 0.56; 95%CI: 0.50-0.62; P = 0.048), respectively. CONCLUSION: 25(OH)D < 20 ng/mL was an independent predictor of death and progression in patients with stage 3-5 CKD, with no additional benefits when patients reached the levels at or above 30 ng/mL suggested as optimal by CKD guidelines.Abbott and the Spanish Society of Nephrolog

    Evidence for muon neutrino oscillation in an accelerator-based experiment

    Get PDF
    We present results for muon neutrino oscillation in the KEK to Kamioka (K2K) long-baseline neutrino oscillation experiment. K2K uses an accelerator-produced muon neutrino beam with a mean energy of 1.3 GeV directed at the Super-Kamiokande detector. We observed the energy dependent disappearance of muon neutrino, which we presume have oscillated to tau neutrino. The probability that we would observe these results if there is no neutrino oscillation is 0.0050% (4.0 sigma).Comment: 5 pages, 4 figure

    Search for coherent charged pion production in neutrino-carbon interactions

    Get PDF
    We report the result from a search for charged-current coherent pion production induced by muon neutrinos with a mean energy of 1.3 GeV. The data are collected with a fully active scintillator detector in the K2K long-baseline neutrino oscillation experiment. No evidence for coherent pion production is observed and an upper limit of 0.60×1020.60 \times 10^{-2} is set on the cross section ratio of coherent pion production to the total charged-current interaction at 90% confidence level. This is the first experimental limit for coherent charged pion production in the energy region of a few GeV.Comment: 5 pages, 4 figure
    corecore